

# THE EFFECT OF A MULTI STRAIN AND ENZYME SILAGE INOCULANT ON FERMENTATION CHARACTERISTICS AND AEROBIC STABILITY OF GRASS SILAGE



Z.K. KOWALSKI<sup>1</sup> J.B. PYS<sup>1</sup> V.DEMEY<sup>2</sup> AND E.CHEVAUX<sup>2</sup>

<sup>1</sup>University of Agriculture in Krakow, Poland

<sup>2</sup>Lallemand Animal Nutrition, 31702 Blagnac Cedex, France



LALLEMAND

LALLEMAND ANIMAL NUTRITION

## INTRODUCTION

Dual purpose inoculants containing homofermentative and heterofermentative bacteria were developed to overcome the limitations of inoculants containing either type of bacteria alone.

## OBJECTIVE

Determine the effect of a commercial multi strain silage inoculant on the DM loss, fermentation characteristics and aerobic stability (AS) of wilted grass silage.

## MATERIAL & METHODS

|               |                                                                                               |
|---------------|-----------------------------------------------------------------------------------------------|
| Forage        | : Wilted grass mixture ( <b>Table 1</b> )                                                     |
| Set up        | : 12 L mini silo (4 silos/treatment)                                                          |
| Opening Times | : 90 days                                                                                     |
| Treatments    | : ■ Control (C) : no additive<br>■ Treatment (T) : Sil-All4x4+WS*                             |
| Measurements  | : ■ Nutritional value<br>■ Fermentation characteristics<br>■ DM losses<br>■ Aerobic stability |

**Table 1** Chemical composition of wilted grass

| DM    | Ash  | CP    | NDF   | ADF   | WSC*    | Soluble-N | dDM <sub>1</sub> | LAB  | Yeast | Molds          |
|-------|------|-------|-------|-------|---------|-----------|------------------|------|-------|----------------|
| g/kg  |      |       |       |       | g/kg DM |           |                  |      |       | log10 CFU/g FM |
| 623.6 | 88.6 | 145.4 | 569.5 | 329.6 | 89.4    | 6.6       | 812.5            | 6.22 | 6.55  | 5.18           |

<sup>1</sup>In vitro dry matter digestibility

\*WSC= Water Soluble Carbohydrates

### \*Sil-All4x4+WS

*Lactobacillus plantarum* CNCM I-3235 (50 000 CFU/g fresh forage)  
*Pediococcus pentosaceus* NCIMB 12455 (200 000 CFU/g fresh forage)  
*Propionibacterium acidipropionici* CNCM MA/26 4U (200 000 CFU/g fresh forage)  
*Pediococcus acidilactici* CNCM I-3237 (100 000 CFU/g fresh forage)  
α-amylase, β-glucanase, cellulase and glucanase  
(enzymes included at EU 1831/2003 efficacy application rate)

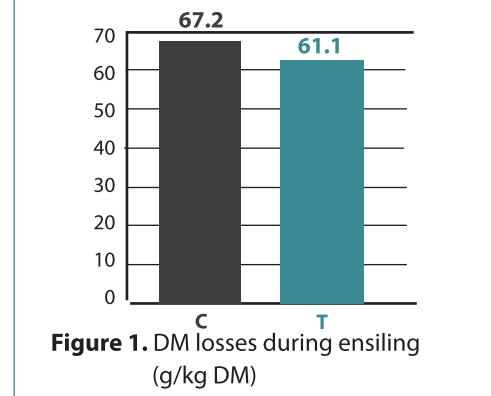
## RESULTS & DISCUSSION

### A. NUTRITIONAL VALUE

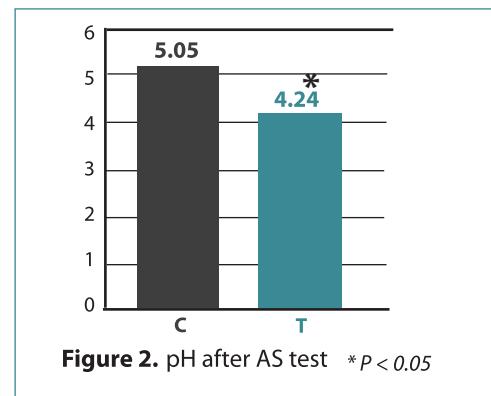
■ Inoculant had no effect on the chemical composition of grass silages

### B. FERMENTATION CHARACTERISTICS (Table1)

- Significantly decreased pH for T compared to C ( $P < 0.05$ )
- Ethanol content significantly lower in T than in C ( $P < 0.05$ ), which is in line with the lower yeast count for T (3.31 vs. 3.64 log CFU/g silage,  $P < 0.05$ )
- Inoculant tended to improve lactic acid:acetic acid ratio (116 vs 46;  $P < 0.1$ )


**Table 1.** Fermentation characteristics of silages after 90 d (DM base )

| Item                       | C      | T      | SEM  |
|----------------------------|--------|--------|------|
| pH                         | 4.90 a | 4.29 b | 0.05 |
| N-NH <sub>3</sub> , g/kg N | 31.8   | 34.6   | 1.7  |
| Lactic acid, g/kg DM       | 27.0 a | 19.7 b | 0.4  |
| Acetic acid, g/kg DM       | 0.9    | 0.2    | 0.2  |
| Ethanol, g/kg DM           | 6.7 a  | 3.1 b  | 0.4  |
| DM losses, g/kg DM         | 67.2   | 61.1   | 2.6  |


a b Means within row with different superscripts differ ( $P < 0.05$ )

### C. DRY MATER LOSSES (Figure 1)

■ DM losses during ensiling were 9% lower for the T group compared to C



**Figure 1.** DM losses during ensiling (g/kg DM)



**Figure 2.** pH after AS test \*  $P < 0.05$

### D. AEROBIC STABILITY

- All silages were aerobically stable
- pH at the end of AS test significantly lower for T compared to C ( $P < 0.05$ ) (**Figure 2**)

## CONCLUSION

The multi strain and enzyme silage additive improved the fermentation characteristics ( $P < 0.05$ ) and reduced DM losses ( $P < 0.05$ ) of wilted grass silage.